Journal of Organometallic Chemistry, 226 (1982) 165–169 Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

TRANSITION METAL CARBONYL DERIVATIVES OF THE GERMANES

XIV *. STUDIES OF MIXED COBALT CARBONYL/MANGANESE CARBONYL SUBSTITUTED GERMANES INCLUDING [(CO)₅MnGeCo₃(CO)₉], μ_3 -(PENTACARBONYLMANGANESEGERMYLIDYNE)CYCLOTRIS-(TRICARBONYLCOBALT)(3Co-Co)

JUDY A. CHRISTIE, D. NEIL DUFFY, KENNETH M. MACKAY and BRIAN K. NICHOLSON

School of Science, University of Waikato, Hamilton (New Zealand)

(Received September 21st, 1981)

Summary

 $[Mn(CO)_5GeH_3]$ reacts smoothly with $Co_2(CO)_8$ to form the $[(CO)_5MnGe-Co_3(CO)_9]$, which is also produced by the reaction of $Mn(CO)_5^-$ with $[(CO)_4CoGeCo_3(CO)_9]$. $[Mn(CO)_5GeMeH_2]$ similarly reacts with $Co_2(CO)_8$ to give $[\{Mn(CO)_5\} \{Co_2(CO)_7\} GeMe]$. The products were characterised spectroscopically and the ESR spectrum of the radical ion of the title compound is presented.

Introduction

Germanes react under mild conditions with $\operatorname{Co}_2(\operatorname{CO})_8$ to yield germaniumpolycobalt species in which each Ge—H has been replaced by a Ge—Co bond. Germanium is usually found in a bridging position, where this is possible. Thus GeH₄ [1] yields [Ge{Co₂(CO)₇}₂], and RGeH₃ give [{Co(CO)₄}{Co₂(CO)₇}-GeR] for R = Ph [2] or Me [3]. The latter compound also results when Co₂-(CO)₈ reacts with [Co(CO)₄GeMeH₂] [3]. It was of interest to examine whether Ge—H bonded to other metals reacted similarly, providing a route to mixed-metal species. Manganese was chosen as the second metal since alternative syntheses of manganese/cobalt germanes are also possible using the established displacement reaction [3,4] of Co(CO)₄⁻ by Mn(CO)₅⁻.

^{*} For part XIII see ref. 1.

Results and discussion

Over a range of reaction ratios, $[Mn(CO)_5GeH_3]$ reacts with $Co_2(CO)_8$ to give only one major product, $[Mn(CO)_5GeCo_3(CO)_9]$, together with varying amounts of $Co_4(CO)_{12}$. There were no high molecular weight residues and only traces of possible alternative products. When the ratio of GeH to Co was greater than 1/1, unreacted pentacarbonyl(germyl)manganese was recovered. Incondensables were not measured directly, but in terms of pressure in a fixed volume over the reaction mixture held in liquid N₂. As the vapour pressure of CO varies very rapidly with temperature around -196° C, the measurements are subject to some uncertainty. However, all the observations are compatible with eq. 1 being the principal reaction. Byproducts include a small amount of HMn-

$[Mn(CO)_5GeH_3] + 1.5 Co_2(CO)_8 \rightarrow 1.5 H_2 + 3 CO + [Mn(CO)_5GeCo_3(CO)_9]$ (1)

 $(CO)_5$ when the Co ratio is low, and small amounts of two different secondary products, one of which may contain a $GeCo_2(CO)_7$ unit. Thus, even using a marked deficit of $Co_2(CO)_8$, the major reaction proceeds with full replacement of all the GeH bonds and complete condensation to the $GeCo_3$ cluster.

With a methylgermyl group on manganese, a very similar substitution is seen with the major reaction as in eq. 2. Again, there is complete substitution of Ge–H and the product contains no $Co(CO)_4$ units. Only minor amounts of other products were observed.

$[Mn(CO)_5GeMeH_2] + Co_2(CO)_8 \rightarrow H_2 + CO + [Mn(CO)_5Ge(Me)Co_2(CO)_7]$ (2)

Thus the addition of GeH bonds to $Co_2(CO)_8$ occurs when the germanium is also bonded to manganese, and essentially proceeds with complete substitution of all the GeH, eq. 1 and 2. The germanium ends up in a μ_2 or μ_3 configuration as observed in the reactions of the parent germanes. This route therefore serves as an approach to mixed-metal carbonyl derivatives of the germanes.

The reaction of the germanium tetracobalt species $[Ge \{Co_2(CO)_7\}_2]$ [1] with (PPN)⁺ Mn(CO)₅⁻ provides an alternative synthesis of $[Mn(CO)_5GeCo_3-(CO)_9]$ and may be formulated in three steps.

$$[\operatorname{Ge}\{\operatorname{Co}_2(\operatorname{CO})_7\}_2] \rightarrow [\operatorname{Co}(\operatorname{CO})_4\operatorname{GeCo}_3(\operatorname{CO})_9] + \operatorname{CO}$$
(3a)

$$[\operatorname{Co}(\operatorname{CO})_4\operatorname{GeCo}_3(\operatorname{CO})_9] + \operatorname{Mn}(\operatorname{CO})_5 \xrightarrow{-} [\operatorname{Mn}(\operatorname{CO})_5 \operatorname{GeCo}_3(\operatorname{CO})_9] + \operatorname{Co}(\operatorname{CO})_4 \xrightarrow{-} (3b)$$

$$\operatorname{Co}(\operatorname{CO})_{4}^{-} + [\operatorname{Ge}\{\operatorname{Co}_{2}(\operatorname{CO})_{7}\}_{2}] \rightarrow [\operatorname{GeCo}_{5}(\operatorname{CO})_{16}]^{-} + 2\operatorname{CO}$$
(3c)

Reactions 3a [1] and 3c [5] have been established separately. Reaction 3b then amounts to substitution of the terminal Ge—Co(CO)₄ group by $Mn(CO)_5^-$, a displacement which is well established for simple germanes $RGeH_2Co(CO)_4$ (R = H, alkyl, GeH₃) [3,4]. There was no indication of any tendency to displace a further cobalt from the GeCo₃ cluster unit.

The spectroscopic properties of $[Mn(CO)_5GeCo_3(CO)_9]$ are consonant with the formulation, Table 1A. The simplicity of the infrared spectrum can be accounted for by overlapping of bands. Thus the strongest band at 2041 cm⁻¹ will include the strong bands expected about 2055 and 2030 cm⁻¹ for a GeCo₃-(CO)₉ moiety [6,7] and that about 2035 cm⁻¹ of the GeMn(CO)₅ unit [8]. A very similar situation pertains for $[Co(CO)_4GeCo_3(CO)_9]$ which also shows

INFRARED-ACTIVE CARBONYL STRETCHING MODES (cm⁻¹).

All measurements in hexane solution

A. Species containing the GeCo ₃ (CO) ₀ molety		
[Mn(CO) ₅ GeCo ₃ (CO) ₉]	[Co(CO) ₄ GeCo ₃ (CO) ₉] [6]	[MeGeCo ₃ (CO) ₉] [7]
2115 w	2111 vw	2105 m
2078 m	2082s	2082 s 2056 s
2041 vs	2044 vs	2046 sh 2030 s
2022 ms	2027 mw	2025 m
B. Species containing the MeGeo	Co ₂ (CO) ₇ moiety	
[Mn(CO) ₅ {Co ₂ (CO) ₇ }GeMe]	[Co(CO) ₄ {Co ₂ (CO) ₇ }GeMe] [17]	[{Со ₂ (СО) ₇ }GeMe ₂] [9]
2109 w	2105 m	
2076 s	2082 s	2087 s
2049 s	2056 s 2046 sh	2048 vs
2030 s	2030 s	
2020 vs	2025 m, br	2025 vs
2014 s	2007 w	2008 vs
2002 w	1998 w	1998 sh 1965 w
	1850 m	
1836 mw	1838 w	1840 m

[6] a very simple four-band carbonyl region in the infrared spectrum. The mass spectrum similarly shows strong resemblances between the [LGeCo₃(CO)₉], L = Mn(CO)₅ or Co(CO)₄ species. In each case, $[P - n \text{ CO}]^+$ fragments are relatively weak for n = 0, 3, 4 and 5 while the metal core, Co₄Ge⁺ or Co₃MnGe⁺, ions are extremely strong and Co₃Ge⁺ is very strong. However, the GeCo₄ species differs in showing a few GeCo₃(CO)⁺_n ions (n = 3, 2, 1) while no GeCo₃ or GeCo₂Mn species retaining CO groups are seen for the manganese derivative.

The spectroscopic properties of $[Mn(CO)_5 \{Co_2(CO)_7\}GeMe]$ again compare well with those of the "all-cobalt" analogue [1,7] $[Co(CO)_4Ge(Me)Co_2(CO)_7]$, and related species [8,9], see Table 1B.

Reduction of $[Mn(CO)_5GeCo_3(CO)_9]$ in THF by a sodium mirror was rapid, as evidenced by a colour change from purple to brown. The paramagnetic species formed, assumed to be $[Mn(CO)_5GeCo_3(CO)_9]$, displayed a symmetrical 22-line ESR spectrum in solution consistent with hyperfine coupling of the unpaired electron to three equivalent cobalt atoms $[a({}^{59}Co) = 33 \text{ G}, I = \frac{7}{2}]$. Coupling to the apical Ge atom, or to the Mn atom attached to the GeCo₃ unit, was not observed. The radical anion has a half-life of ca. 2 h at 295 K in THF. The ESR features are therefore very similar to those of related $[RCCo_3(CO)_9]$. [10] and the neutral paramagnetic $ECo_3(CO)_9$ (E = S, Se [11]), and it can be concluded, by comparison with these earlier studies, that the unpaired electron in $[Mn(CO)_5GeCo_3(CO)_9]$ is in a weakly antibonding orbital localised on the Co₃ triangle, with negligible contribution from the apical Ge atom.

Conclusions

The hydride-elimination reaction of $\text{Co}_2(\text{CQ})_8$ with Ge—H bonds attached to metal-carbonyl groups proceeds predictably to give Ge—Co bonds. Similar species can be generated by displacement of terminal $\text{Co}(\text{CO})_4$ groups attached to Ge by more nucleophilic groups, such as $\text{Mn}(\text{CO})_5$, leaving Co groups which are part of cluster units untouched. Both these routes have potential in the rational synthesis of mixed-metal derivatives of germanium.

Experimental

All compounds were handled under vacuum or under dry nitrogen: other experimental methods were as reported in previous parts [1].

 $[Mn(CO)_5GeH_3]$ plus $[Co_2(CO)_8]$. The reagents (1.07 mmol + 0.47 mmol) were sealed with hexane (3 ml) and allowed to react for 5 h at room temperature by which time bubbling had ceased and the solution was very dark red. There were recovered incondensable gases, unreacted $[Mn(CO)_5GeH_3]$ (0.58 mmol), $[Mn(CO)_5H]$ (trace) and involatile species. Extraction with hexane (20 ml) followed by CH_2Cl_2 (20 ml) completely dissolved the residue. The infrared spectrum showed a trace of $[Mn(CO)_5GeH_3]$, $Co_4(CO)_{12}$, an unidentified species with a band at 2008 cm⁻¹ and the main product in the hexane fraction while the CH_2Cl_2 fraction contained $Co_4(CO)_{12}$ and the main product, in similar quantities.

The experiment was repeated using (0.98 mmol + 0.94 mmol) of the two reagents and yielded incondensable gases, a small amount of unreacted $[Mn(CO)_5GeH_3]$ in the hexane fraction together with main product, a smaller amount of $Co_4(CO)_{12}$, and a trace of a species with a bridging carbonyl frequency at 1842 cm⁻¹.

With a reactant composition of (1.28 mmol + 2.02 mmol), incondensables yielded mostly the main product together with a little $Co_4(CO)_{12}$, and traces of starting material and the 1842 cm⁻¹ species.

The ratio of incondensables for the three reaction ratios was 1.0/2.2/4.8. The main product was identified as $[(CO)_5MnGeCo_3(CO)_9]$ (see below).

 $[Mn(CO)_5GeMeH_2]$ plus $Co_2(CO)_8$. The reagents were allowed to react similarly in a proportion of 0.93 to 1.0 mmol. There were recovered, incondensable gases (relative proportion 1.2), unreacted $[Mn(CO)_5GeMeH_2]$ (0.25 mmol), HMn(CO)₅ (trace), Co₄(CO)₁₂, an unidentified species with CO stretches at 2082 and 2006 cm⁻¹, and the major product. This showed a singlet in the ¹H NMR spectrum at τ 8.51. The infrared bands in the carbonyl stretching region at (cm⁻¹) 2076s, 2049s, 2020vs, 2014s, 2002w and 1836mw may reasonably be assigned to a {Co₂(CO)₇} GeMe molety while 2109w and 2030s, together with a contribution to the 2020vs absorption, correspond to vibrations expected for a (CO)₅MnGe unit, see Table 1B. The mass spectrum also supports a formulation as [{Co₂(CO)₇} {Mn(CO)₅}GeMe] showing the series (P - n CO)⁺ of relative intensities w, m, m, vvw, vw, w, ms, s, ms, m, vs (base peak), ms and s for n = 0 to 12 respectively, together with MnCo₂Ge⁺(s), Co₂Ge⁺(w) and Mn-(CO)₅Ge⁺(m).

 $[Ge\{Co_2(CO)_7\}_2]$ plus $Mn(CO)_5^-$. No reaction occurred between

[Ge{Co₂(CO)₇]₂ (0.5 mmol) and Mn(CO)₅⁻ (0.5 mmol, as PPN⁺ salt) at room temperature in CH₂Cl₂. However, after $2\frac{1}{2}$ h gentle reflux, while the mixture passed through a purple stage and evolved CO, reaction was complete and new infrared carbonyl stretches had appeared including 1887(s, br) cm⁻¹ ascribed to Co(CO)₄⁻. When hexane was added, ionic species (identified as traces of Co-(CO)₄⁻ plus GeCo₅(CO)₁₆⁻ which forms [5] from the reaction of Co(CO)₄⁻ on [Ge{Co₂(CO)₇}₂]) were precipitated leaving Mn₂(CO)₁₀ and product in solution. The solvents were evaporated, Mn₂(CO)₁₀ was sublimed out at room temperature leaving a deep purple solid which was recrystallised from hexane and identified as [{Mn(CO)₅}GeCo₃(CO)₉] (see below).

Characterisc: Ion of $_{1}^{r} {Mn(CO)_{5}} GeCo_{3}(CO)_{9}$. The main product from the reaction $[Mn(CO)_{5}GeH_{3}]$ with $[Co_{2}(CO)_{8}]$ had identical spectra to that resulting from $[Ge\{Co_{2}(CO)_{7}\}_{2}]$ plus $Mn(CO)_{5}^{-}$. The formulation is based mainly on the mass spectrum which showed all the ions of the $(P - n CO)^{+}$ series with relative intensities 17/47/23/6/3/25/88/100/63/74/63/90/54/56/94 for n = 0 to 14 respectively. Also observed $GeCo_{3}^{+}$ (73) and $GeCo_{2}^{+}$ (6). The sample from (A) also showed ions ascribable to a trace of $Co_{4}(CO)_{12}$ and a mediumweak fragment at m/e = 296-288 assigned as $Co_{2}(CO)_{6}Ge^{+}$ which may possibly arise from the minor product showing the bridging carbonyl frequency.

The vibrational spectrum is relatively simple, showing only four ¹²CO modes, Table 1A. However, the latter two have widths of 6 and 10 cm⁻¹ respectively at half-maximum and undoubtedly include more than one component.

Reduction of $[Mn(CO)_5GeCo_3(CO)_9]$. A solution of $[Mn(CO)_5GeCo_3(CO)_9]$ in THF was passed over a sodium mirror in an evacuated ampoule with a 4 mm o.d. side tube (cf. ref. 10). The ESR spectrum of the resulting brown solution was recorded on a Varian E104A spectrometer at ambient temperatures.

Acknowledgements

We thank the N.Z.U.G.C. for equipment grants and for scholarships (J.A.C.) and the University for a study award (D.N.D.). We are grateful to Dr. P. Holland. Ruakura Agricultural Research Centre, for mass spectra.

References

- 1 R.F. Gerlach, K.M. Mackay, B.K. Nicholson and W.T. Robinson, J. Chem. Soc. Dalton, (1981) 81.
- 2 R. Hall, M.J. Bennett, E.H. Brooks and W.A.G. Graham, Chem. Commun., (1970) 592.
- 3 R.F. Gerlach, B.W.L. Graham and K.M. Mackay, J. Organometal. Chem., 182 (1979) 285.
- 4 R.F. Gerlach, B.W.L. Graham and K.M. Mackay, J. Organometal. Chem., 118 (1976) C23.
- 5 R.A. Croft, D.N. Duffy and B.K. Nicholson, J. Chem. Soc. Dalton, in press.
- 6 G. Schmid and G. Etzrodt, J. Organometal. Chem., 131 (1977) 477.
- 7 G. Etzrodt and G. Schmid, J. Organometal. Chem., 169 (1979) 259.
- 8 R.D. George, K.M. Mackay and S.R. Stobart, J. Chem. Soc. D. (1972) 1505.
- 9 R.C. Job and M.D. Curtis, Inorg. Chem., 12 (1973) 2514.
- 10 B.M. Peake, J. Simpson and D.J. Watson, Inorg. Chem., 16 (1977) 405; A.M. Bond, B.M. Peake, B.H. Robinson, J. Simpson and D.J. Watson, Inorg. Chem., 16 (1977) 410.
- 11 C.E. Strouse and L.F. Dahl, J. Amer. Chem. Soc., 93 (1971) 6032.